skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Touri, Behrouz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study strongly convex distributed optimization problems where a set of agents are interested in solving a separable optimization problem collaboratively. In this article, we propose and study a two-time-scale decentralized gradient descent algorithm for a broad class of lossy sharing of information over time-varying graphs. One time-scale fades out the (lossy) incoming information from neighboring agents, and one time-scale regulates the local loss functions' gradients. We show that assuming a proper choice of step-size sequences, certain connectivity conditions, and bounded gradients along the trajectory of the dynamics, the agents' estimates converge to the optimal solution with the rate of O(T^{−1/2}) . We also provide novel tools to study distributed optimization with diminishing averaging weights over time-varying graphs. 
    more » « less
  2. The convergence of an error-feedback algorithm is studied for decentralized stochastic gradient descent (DSGD) algorithm with compressed information sharing over time-varying graphs. It is shown that for both strongly-convex and convex cost functions, despite of imperfect information sharing, the convergence rates match those with perfect information sharing. To do so, we show that for strongly-convex loss functions, with a proper choice of a step-size, the state of each node converges to the global optimizer at the rate of O(T^{−1}). Similarly, for general convex cost functions, with a proper choice of step-size, we show that the value of loss function at a temporal average of each node’s estimates converges to the optimal value at the rate of O(T^{−1/2+ϵ }) for any ϵ > 0. 
    more » « less
  3. Segata, Nicola (Ed.)
    The cost of sequencing the genome is dropping at a much faster rate compared to assembling and finishing the genome. The use of lightly sampled genomes (genome-skims) could be transformative for genomic ecology, and results using k -mers have shown the advantage of this approach in identification and phylogenetic placement of eukaryotic species. Here, we revisit the basic question of estimating genomic parameters such as genome length, coverage, and repeat structure, focusing specifically on estimating the k -mer repeat spectrum. We show using a mix of theoretical and empirical analysis that there are fundamental limitations to estimating the k -mer spectra due to ill-conditioned systems, and that has implications for other genomic parameters. We get around this problem using a novel constrained optimization approach (Spline Linear Programming), where the constraints are learned empirically. On reads simulated at 1X coverage from 66 genomes, our method, REPeat SPECTra Estimation (RESPECT), had 2.2% error in length estimation compared to 27% error previously achieved. In shotgun sequenced read samples with contaminants, RESPECT length estimates had median error 4%, in contrast to other methods that had median error 80%. Together, the results suggest that low-pass genomic sequencing can yield reliable estimates of the length and repeat content of the genome. The RESPECT software will be publicly available at https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_shahab-2Dsarmashghi_RESPECT.git&d=DwIGAw&c=-35OiAkTchMrZOngvJPOeA&r=ZozViWvD1E8PorCkfwYKYQMVKFoEcqLFm4Tg49XnPcA&m=f-xS8GMHKckknkc7Xpp8FJYw_ltUwz5frOw1a5pJ81EpdTOK8xhbYmrN4ZxniM96&s=717o8hLR1JmHFpRPSWG6xdUQTikyUjicjkipjFsKG4w&e= . 
    more » « less